Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder

نویسندگان

  • Huaiyu Hu
  • Yu Liu
  • Kevin Bampoe
  • Yonglin He
  • Miao Yu
چکیده

Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation) knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV) encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P75: Expression of GDNF Genes in the Cerebellum of Rat Neonate Born to Mother with Diabetes

Diabetes Mellitus as a common metabolic disorder in women of reproductive age is rising throughout the globe. Diabetes in pregnancy has various adverse outcomes on different organs development including the central nervous system (CNS) and it can cause learning deficits, behavioral problems and motor dysfunctions in the offspring. The cerebellum is a part of brain that coordinates voluntary mov...

متن کامل

The lithium effect on learning and memory deficits and hippocampal level of BDNF in prenatal seizure kindled rats

Background & Objective: Prenatal seizures cause neuronal damage in the limbic area of fetal brain leading to learning deficits and cognitive impairment in newborns. This study examined the effect of prenatal tonic-clonic seizure and lithium chloride (LiCl) therapy on the learning and memory of rat’s pups. Materials & Methods: Pregnant Wistar rats were kindled by (i.p) injections of 40 mg/kg/BW ...

متن کامل

تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موش‌های آلزایمری مدل استرپتوزوسین

Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...

متن کامل

Tiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice

Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...

متن کامل

Investigation of the effect of Ginkgo biloba leaf extract on spatial memory impairment and hippocampal neuronal loss caused by diabetes induced by streptozotocin in rats

Background and Aim: Learning and memory defect occurs following chronic diabetes with uncontrolled blood glucose. Ginkgo leaf extract improves brain blood flow. Also it contains antioxidant components and has shown beneficial effects in neurological diseases. In this study we investigated the effects of Ginkgo leaf extract on spatial memory impairment and hippocampal neuronal loss caused by dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016